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Reason from Context with Self-supervised Learning
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Abstract

Self-supervised learning (SSL) leads to capturing
discriminative features that are useful for
knowledge transfer. To better accommodate
the object-centric nature of current downstream
tasks such as object recognition and detection,
various methods have been proposed to suppress
contextual biases or disentangle objects from
their contexts. Nevertheless, these methods
often prove inadequate in situations where object
identification benefits from contextual cues, such
as when inferring tiny, poorly illuminated or
occluded objects. Here we investigate whether
and how contextual associations can be enhanced
for visual reasoning within SSL regimes, by (a)
proposing a new Self-supervised method with
external memory for Context Reasoning (SeCo)
, and (b) introducing two new downstream tasks,
lift-the-flap and object priming, addressing the
problems of ”what” and ”where” in context
reasoning. In both tasks, SeCo outperformed
state-of-the-art (SOTA) SSL methods by a
significant margin. Our network analysis revealed
that the proposed external memory in SeCo learns
to store prior contextual knowledge, facilitating
target identity inference in the lift-the-flap
task. Moreover, we conducted psychophysics
experiments and introduced a Human benchmark
in Object Priming dataset (HOP). Our results
demonstrate that SeCo exhibits human-like
behaviors.

1. Introduction
Self-supervised learning (SSL) aims to capture
discriminative visual representations from unlabeled
images, which could be transferred to downstream
tasks such as object recognition and object detection.
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(a) What is the tiny object on the table?
(b) Where should I put the cake?
…

(a) The target is distant and not clearly visible, 
it is probably a glass or cup, not an elephant, 
solely based on the context. (b) Here are 
suggestions for the locations to put the cake.

Prediction:

Glass 50%
Cup 30%
…
Elephant 0%

Figure 1. Schematic illustration of lift-the-flap (“what”) and
object priming (“where”) tasks of context reasoning in
real-world applications. An assistive robot has to solely rely on
context to perform two reasoning tasks: (a) Lift-the-flap: infer
the identity of a hidden object and (b) Object priming: infer
appropriate locations to put an object.

Recent works (Singh et al., 2020; Mo et al., 2021)
showed that mitigating contextual biases, caused by
co-occurrences of objects and context in a complex scene,
can improve the generalization ability of SSL to these
downstream tasks. However, these object-centric methods
dissociate the objects and contexts and thus fail to address
scenarios where contextual information is crucial, such as
recognizing/inferring small, blurred, or occluded distant
objects (Fig. 1a). Objects and contexts always come as
pairs in a natural scene. In this light, humans are adept
at exploiting contextual cues to fill in information gaps
in their sensory input. For example, in Fig. 1a, based on
the scene context, one can infer that the occluded object
inside the red box on the table can be a glass or a cup but
not an elephant. To date, context reasoning capacity has
been studied with supervised learning methods (Zhang
et al., 2020; Bomatter et al., 2021), but there is a lack of
SSL methods for contextual reasoning in the literature.
Therefore, in this paper, we delve into the question of
whether and how contextual associations can be enhanced
for visual reasoning in a self-supervised manner.
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To bridge the above gaps, we propose a Self-Supervised
Learning Method for Context Reasoning (SeCo), where the
pre-training objective is to learn to associate objects and
their contexts in the embedding space. Briefly, SeCo first
uses unsupervised methods to discover region proposals
containing potential target objects of interest. Next, the
target object of interest and its surrounding context are
processed separately by two independent image encoders.
Humans rely on prior knowledge of various objects and their
mutual relationships to establish contextual associations.
Inspired by human behavioral experiments, we introduce
a learnable external memory to store learned contextual
priors.

Here we establish a framework to utilize contextual
knowledge for context-aware SSL. Given unlabeled images
containing multiple objects in natural scenes, the objective
of context-aware SSL is to learn object-context associations.
To showcase the use of context in practical applications,
such as tiny object recognition and placing items in
context-appropriate locations for assistive robots, and to
evaluate the context reasoning capabilities of different
computational models, we introduce two evaluation
protocols, lift-the-flap and object priming, addressing the
problems of “what” and “where” in context reasoning.
Specifically, the lift-the-flap task (Fig. 1a) requires all the
models to utilize the scene context to infer the class of
the hidden target object behind a flap (a black patch). In
the object priming task (Fig. 1b), given an image and a
target object (not already present in the image), models are
expected to predict contextually correct image regions for
placing the target object.

We stress-tested SeCo and state-of-the-art (SOTA SSL
methods on in- and out-of-domain test sets of three
datasets in lift-the-flap and object priming tasks. SeCo
achieved remarkable performance and beats SOTA SSL
methods in all the experiments. To benchmark the model
performance in object priming, we conducted human
psychophysics experiments. Our results show that SeCo
exhibits human-like behaviors. Moreover, we gain insights
into the role of our external memory from intensive network
analysis. We summarize our key contributions below:

(1) To the best of our knowledge, this is the first work
to investigate whether and how contextual associations
can be enhanced within the SSL regime. We establish a
new framework for the SSL community to study context
reasoning, where lift-the-flap and object priming protocols
are introduced to benchmark the contextual reasoning ability
of SSL methods.

(2) We propose a simple yet effective SSL method (SeCo)
to learn contextual associations. SeCo outperforms SOTA
SSL methods on in-domain and out-of-domain test sets in
three datasets in lift-the-flap and object priming tasks.

(3) We contribute a new object priming dataset (HOP)
and human benchmarks on HOP with psychophysics
experiments. Our SeCo achieves human-level performance
and exhibits human-like behaviors.

2. Related Work
Given that ground truth labels are costly to obtain for
supervised learning and that much larger datasets can be
used without labels, SSL has become an emerging trend
in ML. Past handcrafted pretext tasks have been designed
to improve the quality of learned scene representations
such as “inpainting” randomly masked regions of an image
(Pathak et al., 2016). Another group of works (Hjelm
et al., 2018; Misra & Maaten, 2020; He et al., 2020; Chen
et al., 2020) use contrastive learning techniques for SSL
by pulling positive samples together and pushing negative
samples away. However, mining negative examples is not
always feasible; thus, current research has shifted focus to
representation learning solely from positive samples (Chen
& He, 2021; Grill et al., 2020; Bardes et al., 2022; Caron
et al., 2021). With the success of transformer-based models
in NLP and vision tasks (Dosovitskiy et al., 2020), there
has also been a trend in SSL to reconstruct images from
randomly masked image patches (He et al., 2022; Chen
et al., 2022). However, all these previous methods focus
on learning image-level representations from monotonously
large, salient, and centered objects (Deng et al., 2009).

Recent studies by Wang et al. (Wang et al., 2021) and
Xie et al. (Xie et al., 2021) continue to concentrate on
acquiring object-centric representations in self-supervised
learning (SSL) settings, emphasizing the learning of
such representations from intricate scenes. These works
introduce diverse methods for extracting object patches
from scenes, such as retrieving object patches from two
contextually similar images or applying contrastive losses
on local and global views of objects within the same image.
However, a common limitation in these works is their
struggle to capture associations at the instance level within
a scene. Unlike all these works, our SeCo is capable of
learning object-context associations from complex images
where there could be multiple objects in the scene.

Several SSL methods (Caron et al., 2020; Li et al., 2020)
introduce external memories to store trainable object
prototypes and use them to assign similar images to distinct
clusters. In contrast to these methods, our external memory
stores prior knowledge on object-context associations so
that our SeCo can flexibly retrieve useful object information
from context cues in the visual scenes.

The context of a scene (Torralba et al., 2010; Hoiem et al.,
2005; Desai et al., 2011; Lin et al., 2013; Divvala et al.,
2009) is crucial to computer vision tasks, such as object
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Figure 2. The architecture of our proposed Self-supervised
learning for Context reasoning (SeCo). Our SeCo consists
of three critical components: an object discovery module, a
two-stream visual processor, and an external memory. See Sec. 3
for design motivation and implementation details, and Fig. S7 in
Sec. S3.3 for architecture comparison with state-of-the-art SSL
methods.

recognition (Zhang et al., 2020; Bomatter et al., 2021), place
recognition (Wu et al., 2018), and object detection (Liu
et al., 2018; Chen et al., 2018). However, numerous works
(Shetty et al., 2019; Singh et al., 2020; Mo et al., 2021)
found that models suffer from contextual biases caused
by co-occurrences and try to improve the object-centric
generalization ability by removing such biases. Breaking
away from these works, we investigated the problem of
whether and how to leverage contextual cues in the SSL
setting. Although previous works introduced datasets with
context variations, such as ImageNet-9 (Xiao et al., 2021),
these datasets often contain very few objects, discarding
the useful information of object co-occurrences in complex
scenes. As we aim to study context reasoning abilities in
“what” and “where” problems, we introduce lift-the-flap and
object priming protocols, focusing on datasets with multiple
objects and rich context (Caesar et al., 2018).

3. Method
We propose a Self-Supervised Learning Method for Context
Reasoning (SeCo) which learns associations between
objects and their contexts in natural images (Fig. 2). SeCo
consists of three components: (a) object discovery module,
(b) two-stream visual processor, and (c) external memory.
First, the target discovery module uses unsupervised region
proposal methods to locate potential objects of interest on
a full image If . Each region proposal together with the
full image If is subsequently converted to pairs of target
images It and context images Ic. Second, the two-stream
visual processor consists of two independent convolutional
neural network (CNN) encoders and projectors, extracting
information from It and Ic, respectively. Third, SeCo
employs a trainable external memory to store knowledge
priors about contextual associations learned during training
phase. Features from Ic serve as queries to retrieve
context-relevant prior knowledge from the external memory
with an attention mechanism. The retrieved information

provides the complementary signal to the context stream and
gets compared with the target features from It of the object
stream to maximize the agreement between the stored prior
knowledge and the context-relevant object in the embedding
space (see Algo. S1 in Sec. S3.5 for the PyTorch-style
pseudocode of SeCo’s training algorithm).

3.1. Context-Object Pair Discovery

Objects play an important role in context reasoning
(Draschkow & Võ, 2017). To learn object-object and
object-context associations, we propose a context-object
pair discovery module to exploit regions containing objects
of interest. We adopt the selective search algorithm (Uijlings
et al., 2013) to generate regions of interest (RoI) that
potentially contain objects. It is worth noting that selective
search is an unsupervised learning algorithm. It performs
heuristic searches on hundreds of anchor boxes and proposes
RoIs by hierarchically grouping similar regions based on
color, texture, size, and shape compatibility. To reduce
false positives among many RoIs, we filter out resultant
regions according to their area ratio (with a maximum of
0.1) and aspect ratio (within 0.2 and 5). Moreover, we merge
RoIs with heavy overlaps by setting the threshold of IoU
(intersection over union) as 0.3. For each selected RoI, we
generate a pair of target images It and context image Ic. It
is cropped out of full image If . The entire image with the
RoI blacked out with zeros forms the context image Ic.

3.2. Feature Extraction with CNN

Due to eccentricity dependence, human vision has the
highest acuity at the fovea and the resolution drops sharply
in the periphery with increasing eccentricity. For example,
while we are fixating on the mug on the table, the mug is
often perceived in high resolution while the context gist
of the kitchen scene is processed at low resolution in the
periphery. Taking inspiration from this observation, we
propose a two-stream visual processor, with one object
stream dedicated to encoding the target image It and the
other context stream dedicated to encoding the context
image Ic. The encoded representations are denoted as
hc = Ec(Ic) and ht = Et(It), where Et(·) and Ec(·) are
target and context encoders and ht and hc ∈ RD. Since the
features useful for reasoning and perception are different,
we do not enforce weight sharing between the encoders.
We demonstrate the benefit of this approach in the ablation
study.

3.3. Training With An External Memory

As suggested by cognitive and neuroscience works (Zhang
et al., 2020; Riesenhuber & Poggio, 1999; Thorpe et al.,
1996), context processing often happens very fast in the
brain. The perceived scene gist serves as a query to retrieve
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prior knowledge from the semantic memory to modulate
object recognition in a top-down manner. To mimic this
underlying mechanism of context modulation, we introduce
an external memory with trainable parameters, accumulating
prior knowledge of contextual associations. Different from
the well-established cross-attention mechanism (Vaswani
et al., 2017), the objective of our external memory focuses
on dynamically retrieving and updating the prior knowledge.

We define the external memory as a 2D matrix with
trainable parameters, which consists of K memory slots
of H dimension, denoted as M = {m1, ...,mK},M ∈
RH×K . Each memory slot is associated with a key, where
ϕk(·) : RH → RH defines the linear mapping from
the memory content to the keys ϕk(M). The encoded
representation hc from the context stream serves as queries
to the external memory after a linear projection operation
ϕc(·) : RD → RH . The retrieved prior knowledge sc ∈ RH

from M can then be represented as

sc = SOFTMAX(
ϕc(hc)ϕk(M)T√

H
)M (1)

where SOFTMAX(·) is the standard softmax operation.

3.4. Loss Components

To encourage M to learn rich and meaningful context-object
associations, we introduce three types of losses. Ideally,
given only the scene gist, the retrieved prior sc from M
should represent useful object information related to the
given context (i.e., “what could be the target object given
the scene gist” versus “the actual object seen in the scene”).
Thus, we apply a mean squared error loss lmse to maximize
the agreement between sc and ht. To make the vector
dimension comparable, ht is projected to st ∈ RH in the
embedding space via ϕt(·).

As shown by previous works in non-contrastive learning
(Bardes et al., 2022; Chen & He, 2021), maximizing the
agreement between two-stream visual processors alone may
lead to model collapses (e.g., where the external memory
stores and outputs trivial knowledge of all zeros, while the
visual processor encodes images to representations of all
zeros). In this case, sc and st align perfectly, but the encoded
object representations and content in M are meaningless.

Thus, to prevent model collapses, we follow (Bardes
et al., 2022) to enforce covariance Lcov and variance Lvar

regularization on both object and context streams. Lvar

maintains the variance of batch-wise representations,
encouraging object class diversities, while Lcov

de-correlates channel-wise variables to diversify attributes
of an embedding, i.e., maximize independent attributes to
represent objects. SeCo is jointly trained with the total loss:

Ltotal = αLmse(sc, st) + β[Lvar(sc) + Lvar(st)]

+γ[Lcov(sc) + Lcov(st)]
(2)

where α = 25, β = 25 and γ = 1 are hyper-parameters
weighting different loss components (see Sec. S3.6 and
Tab. S3 for the hyper-parameter analysis).

3.5. Implementation Details

Augmentations. Data augmentation techniques are
widely used at image levels in SSL. We applied standard
image augmentations on both It and Ic, including color
jitter, grayscale, horizontal flip, gaussian blur, and color
normalization. Moreover, the random resized crop is another
effective technique in SSL. However, directly applying
this approach is not feasible in our case. Thus, we
extended the standard approach to context-object image
pairs with context-aware crops by ensuring that the relative
locations among objects are preserved and the bounding box
encompassing the target object is always intact and present
on Ic after geometric transformations.

Network architecture. We use ResNet-50 (He et al., 2016)
with D = 2048 output units as our encoders. We set the
size of M as K ×H = 200× 512 and initialize M by the
Xavier uniform initializer (Glorot & Bengio, 2010). We
demonstrate the benefit of external memory and vary its
sizes in the ablation study.

Training. We set the base learning rate to lr = 0.2 ∗
batch size/256 (Goyal et al., 2017). The learning rate grows
linearly from 0 to base value during the first 10 epochs and
then decays with a cosine scheduler (Loshchilov & Hutter,
2016) for the rest of epochs with a minimum value of 0.0002.
All our codes and data will be made publicly available upon
publication.

4. Experiments
4.1. Datasets

To study contextual associations, we use datasets with
multiple objects and rich context: COCO-Stuff (Caesar
et al., 2018), PASCAL VOC07 (Everingham et al., 2010)
and OCD (Bomatter et al., 2021) (see Sec. S2.1). To
evaluate whether the learned contextual knowledge from
SSL methods can generalize well in out-of-domain settings,
we propose two custom regimes on pretext training,
fine-tuning, and testing. COCO-VOC and COCO-OCD
contain COCO-Stuff images with their object classes
overlapping with VOC07 and OCD datasets respectively.
There are 20 classes in COCO-VOC and 15 classes in
COCO-OCD (see Sec. S2.1 for lists of selected classes).
We used the training set of COCO-VOC/COCO-OCD for
pre-training and fine-tuning and then tested all the models
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on the test set of COCO-VOC/COCO-OCD (in-domain) and
VOC07/OCD datasets (out-of-domain).

4.2. Baselines

We compared our SeCo against other SSL methods,
including Context Encoder(Pathak et al., 2016), SimCLR
(Chen et al., 2020), SimSiam (Chen & He, 2021), DINO
(Caron et al., 2021), and VICReg (Bardes et al., 2022). For
all the methods, we used standard ResNet-50 backbones,
with weights pre-trained on ImageNet obtained from their
own public checkpoints. We used the same implementations
from their original papers. For Context Encoder, since
it was originally trained with AlexNet (Krizhevsky et al.,
2012), we re-implemented it with the standard ResNet-50
backbone (Fig. S1). Moreover, we included a supervised
learning baseline that takes Ic as inputs, given the ground
truth target labels (see Sec. S2.2 for further details). To
showcase that learning visual representations solely through
contrasts among local and global patches or between two
contextually similar target objects is insufficient for visual
reasoning tasks, we also compared SeCo with patch-wise
contrastive learning methods such as DenseCL (Wang et al.,
2021), ORL (Xie et al., 2021) in Sec. S3.4.

4.3. Evaluation Protocols for Context Reasoning

Lift-the-Flap. We introduce the lift-the-flap task to address
the problem of “what” in context reasoning. In the task,
all models are required to rely only on context information
to infer the class identity of the hidden target object. To
adapt the pre-trained model to this task, we freeze the model
weights for feature extraction and then only train a linear
classifier to predict the hidden target object. We report the
performance in Top-1 accuracy of all methods in Tab. 1.

Object Priming. We introduce the object priming task
to address the problem of “where” in context reasoning.
Specifically, the model is given an image and a target object
as inputs and has to predict contextually correct locations
for placing the target object. As there was no object priming
dataset in the literature, we curated our own dataset.

[Stimulus design.] We curated semantically relevant 864
unique image-object pairs on 206 images from the test set
of the COCO-OCD dataset. To avoid “crowding” effects
that could bias humans and models to place the same target
objects in the same locations (e.g., images with eggs near
other eggs), for each image-object pair in object priming,
we made sure that there were no object instances present on
the context image whereby these object instances belong to
the same class as the given target object (see Sec. S2.3 for
details about selecting these image-object pairs).

[Human response collection.] We followed standard
approved Institutional Review Board protocols and used

Amazon Mechanical Turk (AMT) to collect responses from
a total of 437 human subjects with their consent. For
each subject, we randomly sampled 20 image-object pairs
and presented the 800×800 image along with the question
“Where would you put this [obj]?” where [obj] corresponds
to the sampled target object. The subjects were required to
make 10 non-repeated mouse clicks at relevant regions of the
image. For each image-object pair, we collected responses
from 3 human subjects, producing 30 unique clicks in total
per image-object pair. We show the schematic for the human
psychophysics experiment in Fig. S2 and AMT interface
in Fig. S3. For each image, we consolidated all 30 click
coordinates and generated the click probabilistic map of
size 252. After post-processing steps (see Sec. S2.3), we
produced final human priming maps (Column. 3 of Fig. 3
& Fig. S5).

[Model-human comparisons.] To predict priming maps
for all the models, we converted the object priming task to
a series of lift-the-flap tasks with the following steps: (1)
we divide the context image into patches. (2) We covered
a single image patch with a flap (black pixels) while the
remaining patches remain intact. (3) We tested all models
fine-tuned on COCO-OCD from the lift-the-flap task in
(2) and recorded the predicted classification probability of
the model for the given target object class in the object
priming task. (4) We iterated through (2) and (3) until
we exhaustively performed “lift-the-flap” tasks over all
the image patches. (5) For each image patch, we then
have a classification score indicating how confidently the
model would put the given target object in that patch.
We consolidated all the probabilities for all the patches
and generated the priming map for each model. As the
model predictions were sensitive to the patch sizes, we
varied the patch sizes and normalized the final priming
map over all patch sizes (see Algo. S2 in Sec. S2.3 for
details). We compared the similarity between human
priming maps and the priming maps generated by all models
using root-mean-squared errors (RMSE) and reported the
results in Tab. 3.

5. Results
5.1. Lift-the-flap task

We report the top-1 target inference accuracy of all
models in the lift-the-flap task (Tab. 1). SeCo achieves
an overall accuracy of 52.31% and 52.43% on the test
sets of COCO-VOC and COCO-OCD, surpassing all the
baselines by a large margin. The Context Encoder (Pathak
et al., 2016) is trained with the hand-crafted pretext task
by reconstructing the masked region at the pixel level.
However, its performance is inferior to other baselines
and our SeCo, implying that pixel-level reconstruction
focuses on details of visual features, discarding the local
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Table 1. SeCo outperforms all baselines in the lift-the-flap task.
We test all the baselines on in- and out-of-domain images from
COCO-VOC and COCO-OCD regimes (see Sec. 4.1 section for
data splits). We report the network size in pre-training and top-1
accuracy averaged over 5 runs. See Sec. 4.2 for details.

Method #Param In Domain Out Of Domain

C
O

C
O

-V
O

C

Supervised 24M 48.59 53.69
Context Encoder 28M 15.78 14.82
SimCLR 28M 32.78 37.65
SimSiam 38M 39.79 45.76
DINO 133M 42.06 48.07
VICReg 175M 44.89 52.58
SeCo (Ours) 50M 52.31 57.27

C
O

C
O

-O
C

D

Supervised 24M 42.51 20.17
Context Encoder 28M 20.55 10.68
SimCLR 28M 35.78 15.51
SimSiam 38M 42.46 19.36
DINO 133M 43.21 15.34
VICReg 175M 44.34 24.31
SeCo (Ours) 50M 52.43 31.37

contextual associations, such as object co-occurrences.
Contrastive methods like SimCLR (Chen et al., 2020)
performed worse compared with non-contrastive methods
like SimSiam (Chen & He, 2021). This observation suggests
that multiple objects could co-occur in the same context
and making a selection of negative samples is non-trivial
and challenging in context-aware SSL. Interestingly, DINO
(Caron et al., 2021) and VICReg(Bardes et al., 2022) have
almost 3 times more parameters, but still underperform
SeCo, indicating a larger capacity does not guarantee better
reasoning ability. Moreover, SeCo even surpasses the
supervised learning baseline, suggesting that SeCo learns
to capture meaningful contextual associations in the scenes,
beneficial for downstream reasoning tasks.

Contextual associations should be invariant to domain shifts
of visual features (e.g., a bird flying in the sky regardless
of whether the scene is depicted in Picasso or Monet
styles). We tested all models in out-of-domain datasets,
PASCAL VOC07 and OCD. Without any fine-tuning,
SeCo outperforms previous approaches on out-of-domain
images, with top-1 accuracy of 57.27% and 31.37% on
PASCAL VOC07 and OCD respectively. Compared
across domains, we noted that all methods achieve slightly
better performance in PASCAL VOC07 than COCO-VOC,
because both COCO-VOC and PASCAL VOC07 contain
natural images, and the context-associated object pairs
on these images are more prevalent on VOC. On the
contrary, domain shift from natural images in COCO-OCD
to synthetic images in OCD leads to a big performance drop
for all the models. Yet, our model gets less impaired due
to domain shifts, highlighting that SeCo learns contextual
associations rather than correlations of visual features.

One critical challenge in the lift-the-flap task is to

Table 2. SeCo enhances object recognition abilities of all
baselines. We report top-1 accuracy averaged over 5 runs
on COCO-OCD dataset in object recognition tasks under three
conditions: (1) without contextual priors; (2) with contextual priors
predicted by the baselines and (3) by our SeCo.

Object Context Accuracy Object Context Accuracy

SimCLR - 55.38 SimSiam - 67.12
SimCLR SimCLR 57.33 SimSiam SimSiam 70.93
SimCLR SeCo 58.29 SimSiam SeCo 70.72

DINO - 70.84 VICReg - 74.52
DINO DINO 73.35 VICReg VICReg 75.53
DINO SeCo 74.17 VICReg SeCo 76.46

identify small, blurred, or occluded distant objects. To
demonstrate this point, all the baseline SSL methods
leverage contextual information in the lift-the-flap task as
priors to modulate their predicted probability distribution
in the object recognition task on COCO-OCD dataset. See
Sec. S3.1 for implementation details. We report the top-1
recognition accuracy in Tab. 2. Compared to the case when
all SSL baselines recognize objects based on It alone, we
observe higher top-1 accuracy after incorporating context.
This suggests that context enhances object recognition.
Moreover, after substituting the prior distribution predicted
by all SSL baselines themselves in the lift-the-flap tasks
with our SeCo, we saw another significant boost in object
recognition accuracy. This emphasizes the superiority in
the context reasoning ability of our SeCo against all SSL
baselines. Consistent with previous works (Zhang et al.,
2020; Bomatter et al., 2021), we also break down the results
according to the target object sizes and we find that the
effect of contextual cues is more prominent in recognizing
smaller target objects (see Sec. S3.1 and Fig. S6 for results
and more analysis).

5.2. Object priming task

We compare human priming maps with the maps predicted
by all models and report RMSE scores in Tab. 3. As an
upper bound, we calculated the between-human RMSE
score (0.17) by comparing maps from pairs of humans.
SeCo achieves the lowest RMSE of 0.32 compared to all
baselines, emphasizing that SeCo predicts more human-like
priming maps than all the baselines. In general, we
also noticed that there still exists a big gap between
model-human and human-human agreement in object
priming. This gap could be due to several reasons: (1)
models are not finetuned on the HOP dataset; (2) discrete
priming maps have different-sized grids from the ones used
in human experiments; and (3) it is still challenging for
machines to capture how humans incorporate context, given
that humans have decades of daily experience with context.

To assess the quality of the predicted priming maps by all
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Cake
Humans SeCo (Ours) SimCLR SimSiam VICReg DINOContext EncoderMouse ClicksScene Image

Figure 3. SeCo priming maps highlight contextually relevant regions of the image and closely approximate human choices in the
object priming task. The leftmost column shows the input scene image and the given target object class label used for priming. The rest
of the columns from left to right are the consolidated click map from 3 human subjects with 10 non-overlapping mouse clicks (dots)
each in different colors, ground truth priming maps generated from human mouse clicks, and priming maps predicted by our SeCo and
predicted by all baselines. See more qualitative examples in Sec. S2.3 and Fig. S5.

Table 3. Root mean square error (RMSE) between human
priming maps and maps predicted by computational models
in object priming task. Lower is better. RMSE for the human
agreement was calculated by comparing priming maps across the
3 human subjects for individual image-object pairs.

Method RMSE Method RMSE

Supervised 0.37 Human 0.17
Context Enc. 0.41 SimCLR 0.44
SimSiam 0.43 DINO 0.42
VICReg 0.40 SeCo (Ours) 0.32

models, we also visually examined qualitative examples
(Fig. 3 and Fig. S5). In contrast to all the baselines
which tend to generate relatively uniform flat priming
maps, our SeCo manages to predict semantically reasonable
locations to place target objects. Note that we do not
train or fine-tune any methods to fit human priming maps.
It is quite remarkable that our SeCo can transfer the
knowledge in contextual associations to infer target-relevant
semantically-correct locations in the scene.

5.3. Ablation and memory analysis

We assessed the importance of design choices by training
and testing ablated versions of SeCo on COCO-OCD.

First, to demonstrate the effectiveness of the object
discovery module, we replaced the object-context image
pairs proposed by selective search (Uijlings et al., 2013)
with randomly generated object-context image pairs (Tab. 4,
III, RG). As expected, RG acts as the lower bound of the
discovery module, and the top-1 accuracy drops by 16%.
This highlights that the “objectiveness” in generated regions
helps learn contextual associations. We also trained SeCo on
the object-context image pairs from annotated ground truth
bounding boxes (Tab. 4, II). Surprisingly, SeCo performs
better with SS by 3%.

To investigate how SS affects pre-training, we looked into
both the quantity and quality of the proposals from SS.
See Sec. S3.2 for experimental setups. We observe that in
Fig. 4 (a), raising the Intersection of Union (IoU) threshold

0.0 0.1 0.2 0.3
IoU Threshold

46

48

50

(a) Quality

5 10 20 30
#Boxes per Image

(b) Quantity

Figure 4. Analysis of the effect of the quantity and quality
of object proposals predicted by selective search in the
lift-the-flap task. We report the top-1 accuracy for varying quality
of proposals (a) and varying quantity of proposals per image (b) in
the lift-the-flap task. See Sec. S3.2 for more details.

compromises the performance of SeCo, while there is a
slight gain in Fig. 4 (b) when more proposals are included.
It indicates that the quantity of the proposals determines
the target diversity and matters more than the quality of
the proposals. This observation can attribute to SeCo
performing better with selective search than with ground
truth. Next, to further stress-test that our external memory
dedicates to storing context-object associations, rather than
a general form of “inpainting” buffer for filling in any
missing pixels on Ic, we substituted Ic and It with two
standard augmented views of the full image If (Tab. 4,
IV). The inferior performance to our SeCo highlights: (1)
context-object pair discovery module is essential, and (2)
external memory works best in reasoning on object identity
from context.

Next, we prepended object-discovery modules to feed
object-context pairs to SimSiam and VICReg, denoted
as SimSiam-SS and VICReg-SS (Sec. S3.3 and Fig. S7).
We also included the downsized VICReg with comparable
network sizes as SeCo (VICReg-SSTiny). From
Tab. S1, SeCo significantly surpasses VICReg-SSTiny
and SimSiam-SS and performs competitively well as
VICReg-SS although SeCo is 7 times smaller than
VICReg-SS, which indicates object-discovery module

7
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Table 4. Ablation Study. Top-1 accuracy in lift-the-flap on
COCO-OCD for ablated models, where SS denotes Selective
Search, GT denotes Ground Truth, RG denotes Random
Generating, Standard denotes standard augmented view input,
NSA denotes Non-Shared Architecture. See Sec. 5.3 for
descriptions. Default settings of SeCo are highlighted .

Discovery NSA Memory #Param Accuracy

I SS ✓ ✓ 50M 52.43
II GT ✓ ✓ 50M 49.61
III RG ✓ ✓ 50M 36.95
IV Standard ✓ ✓ 50M 43.01
V GT ✗ ✓ 25M 37.48
VI GT ✓ ✗ 49M 44.07
VII SS ✓ ✗ 50M 39.95

works best with the external memory.

Morever, we trained two separate encoders Et(·) and Ec(·)
in SeCo. Here, we enforced weight-sharing encoders
(Tab. 4, V). SA achieved a lower top-1 accuracy than SeCo,
suggesting that the same features for both target and context
streams are insufficient to reason about context.

To study the effect of the external memory in context
reasoning, we remove the external memory from our default
SeCo (Tab. 4, VI), which leads to 5% drop in performance.
To validate that the performance gain from external memory
is not simply due to additional capacity, we remove external
memory and increase the capacity of SeCo until its network
size becomes comparable with the original SeCo (Tab. 4,
VII). Compared to the original SeCo (Tab. 4, I), the
performance drops by 12.5%. Inferior results in these
two ablation studies demonstrate that external memory
enhances the reasoning ability of SeCo. We also vary
the number of memory slots and feature dimension of the
external memory respectively (see Sec. S3.5). We observe
that the performance of SeCo saturates when the external
memory is oversized (Fig. S8). It suggests that larger
memory capacity in general helps learn and store richer
contextual associations; however, an overly large-sized
memory may hurt context reasoning abilities, as the memory
fails to generalize the learned contextual knowledge due to
over-fitting.

We further probe what the external memory has learned by
visualizing the pairwise KL divergence of attention score
over memory slots for object categories in COCO-VOC.
Each cell in the matrix denotes the distance of attended
memory slots to retrieve information from, given the
pair of contexts where the two object classes are present.
The darker grids denote that object classes are more
likely to share the same context. See Sec. S3.6 and
Algo. S3 for implementation details. We highlighted
several context-relevant pairs of object classes from various
supercategories, such as vehicles, animals, and indoor

[dog, cat]

[motorcycle, bicycle]

[horse, sheep][bicycle, car]

[tv, plotted plant]

Figure 5. Pairwise KL div. of attention scores over memory
slots of the external memory in SeCo for object categories in
COCO-VOC. Dark grids show that targets sharing similar contexts
in both categories retrieve information from similar memory slots.
Colored boxes pointed by arrows denote different supercategories
in VOC07, e.g. vehicle , animal , indoor . See Sec. S3.6 for
implementation details.

objects. For example, though the tv and the potted plants
are not visually similar, they are contextually relevant. This
suggests the external memory in SeCo learns meaningful
object-context associations.

6. Discussion
We set out to determine whether and how SSL methods
can capture the statistics of associations in natural images.
To this end, we introduced SeCo, a simple yet effective
self-supervised learning method for context reasoning,
which learns object-context associations from unlabeled
images. Like humans, SeCo relies on external memory
to develop knowledge priors through repeated encounters
with objects and their contexts during learning. SeCo
subsequently reasonsby retrieving information from these
learned priors.

We speculate that humans also learn context in a largely
self-supervised fashion, similar to the learning protocol in
SeCo. It is interesting that the SeCo model can extrapolate
across lift the flap and object priming tasks from different
domains. Our SeCo also significantly outperforms SOTA
SSL methods, closing the gap in reasoning abilities between
humans and AI models. Relying too much on context
can be harmful in some corner cases. Thus, in the future,
it will be important to investigate the trade-off between
identifying objects and reasoning from context. Moreover,
as our proposed external memory in SeCo can bootstrap
reasoning ability, it is also worth investigating the generic
memory functionality in object-centric SSL settings.
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Impact Statements
SeCo relies on contextual information for decision-making,
necessitating careful consideration during development and
deployment to address potential biases. Concerns include
the potential for falsifying context to manipulate SeCo into
unfair decisions and the risk of unfair biases stemming from
contextual reasoning in the training set.
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S1. Method
We provide PyTorch-style pseudocode for SeCo in Algo. S1.
In practice, we randomly sample 4 target-context pairs for
each image in each iteration and average the loss value
over these sampled pairs. We resize the context images
to 224×224 and the target images to 96×96. All our
experiments were conducted on Ubuntu with NVIDIA RTX
A5000 GPUs of 24GB memory. Our code is implemented
based on the public repository of each baseline, with
following core packages: PyTorch 1.11.0, opencv-python
4.6.0, numpy 1.22.3. All our codes and data will be made
publicly available upon publication.

S2. Experiments
S2.1. Datasets

COCO-Stuff Dataset (Caesar et al., 2018) contains 160K
natural images from MSCOCO (Lin et al., 2014) with 80
thing classes and 91 stuff classes in total. Importantly, this
dataset captures complex relationships between multiple
objects and carries rich contextual information.

PASCAL VOC07 Dataset (Everingham et al., 2010)
contains 9,963 images of realistic scenes with a total of
20 object classes.

Out-of-Context Dataset (OCD) (Bomatter et al., 2021)
contains 15,773 synthetic test images of indoor scenes with
36 classes under 6 different contextual conditions. In our
work, we only consider normal context condition with 2,309
test images.

To evaluate whether the learned contextual knowledge
from SSL methods can generalize well in out-of-domain
settings, we design two custom regimes for our experiments
COCO-VOC and COCO-OCD. Overlapped classes are as
follows:

COCO-VOC contains the same 20 classes in hierarchy
of superclass and subclass as defined in PASCAL VOC07
(Everingham et al., 2010).

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

Algorithm S1 PyTorch-style pseudocode for SeCo
# Ec, Et: context and target encoders
# pc, pt: context and target projectors
# M: external memory shaped in K-by-H
# pk: key projection of external memory
# mse: mean square error loss
# var loss: variance loss
# cov loss: covariance loss
# alpha, beta, gamma: weightage of each
loss component

# load a batch of N images
for x in loader:

# randomly augmented target and context
t, c = augment(x)

# encode and project context, target
stream
hc, ht = Ec(x), Et(x) # N x D
sc, st = pc(hc), pt(ht) # N x H
# compute keys of memory
m = pk(M) # K x H
# retrieve memory
p = softmax(dot(sc, m))/sqrt(H) # N x K
sc = p * M # N x H
# calculate loss and update
loss = alpha * mse(sc,st) + beta *
(var loss(sc) + var loss(st)) / 2 + gamma
* (cov loss(sc)+ cov loss(st))
loss.backward()

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike,
train

• Indoor: bottle, chair, dining table, potted plant, sofa,
tv/monitor

COCO-OCD contains the same 15 classes as in OCD
dataset (Bomatter et al., 2021): wine glass, cup, knife,
bowl, apple, cake, mouse, remote, keyboard, cell phone,
microwave, book, toothbrush, pillow, towel.

S2.2. Baselines

We use ResNet-50 (He et al., 2016) as the encoder in Context
Encoder (Pathak et al., 2016) for fair comparisons with other
baselines (see Sec. 4.2). Following its original work, we
use an asymmetric decoder with five up-convolution layers
to reconstruct the masked central region. See (Fig. S1)
for the architecture design. We pre-trained the model on
ImageNet-1K(Deng et al., 2009) with mean square error
loss for 100 epochs. We set the learning rate as 0.001.
Starting from weights obtained on ImageNet-1K, we further
fine-tuned the model on COCO-VOC and COCO-OCD
respectively.
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Figure S1. The architecture of Context Encoder (Pathak et al., 2016) with ResNet-50 (He et al., 2016) as backbone encoder. Aligned
with its original work, we use a channel-wise fully connected layer followed by a five-layer decoder to reconstruct the masked central
region from the encoder output.

…
Where will you put a 

CUP in this image?
Time

10 non-overlapping 
mouse clicks Subj1 Subj2 Subj3

Figure S2. Schematic for human psychophysics experiments in
object priming task. Subjects were first presented with a natural
image and a target object. They were then asked to put the object at
appropriate locations by making 10 non-overlapping mouse clicks
(red dots).

S2.3. Object Priming

[Stimulus designs] Here, we describe the steps to curate
semantically relevant image-object pairs for the object
priming experiment. First, we wanted to select images
that were semantically relevant to the 15 classes of the
COCO-OCD dataset. To accomplish this, we sampled
images from the test set of the COCO-OCD dataset that
contained at least 3 object classes from the 15 objects classes.
Next, for each image i in the sampled images, we manually
select a subset Ci of semantically meaningful target classes
from the 15 classes ensuring that the target class is not
already present in the image. Following the above steps, we
produce 206 images and 864 unique image-object pairs.

[Human response collection] we show the schematic
for the human psychophysics experiment in Fig. S2 and
a screenshot of the AMT interface in Fig. S3 used for
human object priming experiments. All the psychophysics
experiments were conducted with the subjects’ informed
consent and according to the protocols approved by our

Figure S3. AMT user interface for human object priming
experiment. Red dots indicate the past click locations.

Institutional Review Board. For quality controls, we
only recruited participants with master qualification and
a minimum of 95% approval rate. Each participant is
compensated for participation in the experiments, which
typically took 6 mins to complete.

[Post-processing] Here, we describe the post-processing
of human object priming responses in detail. We first
created a 32×32 attention map by dividing the 800×800
stimuli image into 1,024 individual grids of size 25×25.
We then aggregate the clicks made in each grid such that
the pixel intensity in the attention map corresponds to the
number of clicks. On this 32×32 attention map, we then
apply Gaussian smoothing using an 11×11 filter, followed
by resizing to 224×224, and min-max normalization to
generate final human priming maps (Fig. S4).

[Model-human comparisons] We briefly introduce the
process of generating priming maps for computer vision
models in Sec. 4.3 and provide its pseudocode in Algo. S2.
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…
Where will you put a 

CUP in this image?
Time

10 non-overlapping 
mouse clicks Subj1 Subj2 Subj3

Figure S4. Human priming map. The left image shows the different mouse clicks made by 3 human subjects (colored dots) for cup
as the target object. On the right, we show the corresponding human priming map from consolidated clicks. A higher density of clicks
translates to a higher probability in the priming map. See the color bar for probability values.

We use 5 grid sizes to generate priming maps in different
scales (8×8, 14×14, 28×28, 56×56, 112×112) and
normalize these maps to obtain the final map. We provide
more qualitative examples of model-human comparison in
Fig. S5.

S3. Experiments, Ablations, and Analysis
S3.1. SeCo Enhances Object Recognition Abilities

In Tab. 2, we incorporated contextual information into the
recognition task. Specifically, for the baseline methods,
we trained a linear classifier ϕt on the top of the freezed
backbone given cropped-out objects and corresponding
labels from the COCO-OCD dataset. Then, we leverage
linear classifiers ϕc trained in the lift-the-flap task to infer
the target identity from the surrounding context of a given
target object. We obtain the final prediction by multiplying
the probabilities generated by ϕt and ϕc.

We break down the results according to the object sizes
in Fig. S6. As observed, when the context-object ratio is
larger than 2 on a logarithmic scale, incorporating contextual
information learned with the lift-the-flap task constantly
helps with recognizing smaller objects for all baselines
(compare dotted line versus solid line). However, the effect
of context impairs the recognition performance when the
object is extremely small (the context-object ratio is less
than 2). It is possible that the extremely small objects blend
in the context and all recognition models fail to locate where
the target objects are on the complex images.

S3.2. Analysis of Object Proposals Predicted by
Selective Search

In Tab. 4 we observed that SeCo pre-trained with selective
search (SS) outperforms that with ground truth. To
investigate how SS affects pre-training, we looked into
both the quantity and quality of the proposals. Firstly, we
scored each region proposal by IoU (intersection over union)

against ground truth bounding boxes. We keep images in
COCO-OCD containing at least 10 proposals with the IoU
score larger than 0.3, which results in a dataset of 19.7K
images. We use the following protocols to benchmark SeCo
in terms of the quantity and quality of the proposals by SS.

[Quality]. We filtered out proposals according to an IoU
threshold γ resulting in a proposal pool Bγ = {b|IoU(b) >
γ}. We keep the number of object proposals the same for
every image Ii and only vary the IoU thresholds to study
the quality of proposals. Specifically, we randomly selected
5 proposals from Bi

γ and varied γ ∈ {0, 0.1, 0.2, 0.3}. We
applied the same training procedure described in Sec. 3.5
and Sec. S1. We report the Top-1 accuracy in Fig. 4(a),
dash line.

Table S1. Baseline variations. We tailored SimSiam and VICReg
by prepending the object discovery module (SimSiam-SS and
VICReg-SS). † denotes that original baselines use shared encoders.
‡ denotes that SeCo and all altered methods use selective search
and non-shared encoders.

Method #Param Accuracy

SimSiam† 38M 42.46
SimSiam-SS‡ 76M 45.45
VICReg† 175M 44.34
VICReg-SS‡ 349M 52.70
VICReg-SSTiny

‡ 49M 40.95
SeCo‡ 50M 52.43

[Quantity]. We fix the IoU threshold γ as 0. For each image
Ii, we vary the number of proposals in {5, 10, 20, 30} and
randomly sample the proposals from Bi

γ=0. After this, we
applied the same training procedure described in Sec. 3.5
and Sec. S1. We report the Top-1 accuracy in Fig. 4 (b),
solid line.

We observe that in Fig. 4 (a), raising the IoU threshold
does not lead to the performance gain for SeCo. On the
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Humans SeCo (Ours) SimCLR SimSiam VICReg DINOContext Encoder
Computer


Mouse

Pillow

Cake

Wine Glass

Knife

Cup

Cake

Apple

Figure S5. SeCo priming maps highlight contextually relevant regions of the image and closely approximate human choices in the
object priming task. The leftmost column shows the input image and the given target object class label used for priming. The rest of the
columns from left to right are priming maps from humans, predicted by our SeCo and predicted by all baselines. See Fig. 3 for the color
bar.
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Algorithm S2 PyTorch-style pseudocode for generating
priming maps.
# Ec: trained context network with an
encoder and a linear classifier
# patch sizes: patch sizes when making
erased contexts

# load a batch of N images
for x, label in loader:

maps = []

# calculate priming maps in multiple
scales
for patch size in patch sizes:

# iteratively erase a patch from
image
contexts = make context(x, patch size)

# retrieve probability w.r.t location
for a given object category
p = softmax(Ec(x)[:,label])

# normalize so that priming maps in
different scales can add up
p = (p - p.min()) / (p.max() -
p.min())

# upsample to the size of input image
patch num = x.size[1] // patch size
p = p.view((patch num,patch num))
p = upsample(p)
maps.append(p)

# finalize priming maps by averaging and
normalizing over different scales
maps = torch.stack(maps).mean(0)
maps = (maps - maps.min()) / (maps.max()
- maps.min())

contrary, there is a slight increase in top-1 accuracy when
we increase the number of proposals (Fig. 4 (b)). It indicates
that the diversity of the proposals contributes more to the
performance boost in SeCo+SS (Tab. 4, I) than the quality
of the proposals in SeCo+GT (Tab. 4, I).

S3.3. Baseline Variations

We prepended object-discovery modules to feed “object”
and “context” patches to SimSiam (Chen & He, 2021)
and VICReg (Bardes et al., 2022) (SimSiam-SS and
VICReg-SS). We also included the downsized VICReg
with comparable network sizes as SeCo (VICReg-SSTiny).
We visualize the architecture of SeCo, SimSiam, VICReg,
and their altered versions in Fig. S7. We report top-1
accuracy on COCO-OCD in Tab. S1. As we observed, SeCo
significantly surpasses VICReg-SSTiny and SimSiam-SS and

Algorithm S3 PyTorch-style pseudocode for calculating
pairwise KL divergence of attention score over memory
slots for object categories in COCO-VOC.
# Ec: context encoders
# pc: context projector
# M: external memory shaped in K-by-H
# F: frequency matrix shaped in C-by-K
# D: pair-wise KL-divergence matrix shaped
in C-by-C
# product: cartesian product of two sets
# kld: KL-divergence function

for x, label in loader:

# obtain erased context
c = erase(x)

# encode and project context stream
hc = Ec(x) # 1 x D
sc = pc(hc) # 1 x H
# compute keys of memory
m = pk(M) # K x H

# retrieve attention score over memory
slots
p = softmax(dot(sc, m))/sqrt(H) # 1 x K
# sharpen the distribution
top1 = p.max(0)[1]
F[label, top1] += 1

# calculate pairwise KL-divergence
for i,j in product(range(C), range(C)):

F[i] = (F[i] - F[i].min()) / (F[i].max()
- F[i].min())
F[j] = (F[j] - F[j].min()) / (F[j].max()
- F[j].min())
pi, pj = softmax(F[i]), softmax(F[j])
D[i,j] = kld(pi, pj)

performs competitively well as VICReg-SS although SeCo
is 7 times smaller than VICReg-SS.

S3.4. Patch-Wise SSL

We compared our SeCo to existing patch-wise SSL methods,
DenseCL (Wang et al., 2021) and ORL (Xie et al., 2021).
Both methods rely on the augmented views of the same
object instances from the same input image or the different
object instances from similar contextual images. In contrast,
our SeCo relies on the retrieved object representations from
the learnable external memory and compares them against
proposed regions. Thus, this enforces the context encoder of
our SeCo to learn the context representations to retrieve the
correct target object representations from the memory. The
introduction to the external memory fundamentally changes
the objectives from object-centric representation learning to
object-context associative learning. For fair comparisons,
we directly used the public checkpoints of DenseCL and
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Figure S6. Contextual cues improve recognition of small target objects. We report the curves of Top 1 Accuracy on COCO-OCD
versus context-object ratio in logarithmic scale.
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Figure S7. Architecture comparisons between SeCo, baselines, and their altered versions in Sec. S3.3 and Tab. S1. We use the
same design conventions in (Bardes et al., 2022), where green blocks denote parametric functions, yellow boxes denote non-parametric
functions, and blue boxes denote objective functions. In all methods, the input is either a pair of augmented views I and I ′ from the
same image (b)(d), or a pair of context Ic and target It sampled from proposals generated by selective search (Uijlings et al., 2013)
(a)(c)(e). The representations h are processed by a projector (narrowing trapezoid) to reduce the dimensionality (a)(d)(e) or an expander
(widening trapezoid) to increase the dimensionality (b)(c). SeCo (a) applies learnable external memory M to store and retrieve contextual
knowledge. The same variance, invariance, and covariance regularization objectives are applied on both branches as in VICReg (b)(c).
SimSiam (d)(e) uses a predictor on one branch and the stop-gradient on another.

Table S2. The performance on the COCO-OCD In- &
Out-of-Domain dataset in the lift-the-flap (Top-1 Accuracy) and
Object Priming (RMSE).

Method OCD-ID OCD-OD Object Priming

DenseCL 41.10 17.22 0.44
ORL 44.73 17.06 0.42
SeCo 52.43 31.37 0.32

ORL and compared them with SeCo on COCO-OCD in the
lift-the-flap task.

S3.5. Analysis of External Memory Size

We also vary the number of memory slots (Fig. S8, left) from
100 to 800. There is a moderately positive increase of 2.5%
in Top-1 accuracy in lift-the-flap. However, we observed a
non-monotonic trend in Top-1 accuracy, when we vary the
feature dimension of the external memory (Fig. S8, right).
The top-1 accuracy peaks when the feature dimension equals
512. It suggests that larger memory capacity in general
helps learn and store richer context-object associations;
however, an overly large-sized memory may hurt context
reasoning abilities, as the memory fails to generalize the
learned contextual knowledge due to over-fitting.
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Figure S8. Analysis of external memory of SeCo. We report
the top-1 accuracy for varying numbers of slots (left) and varying
memory dimensionality per slot (right) in the lift-the-flap task.

Table S3. Ablation study on loss components. α, β, and γ
are weightages of MSE loss, variance loss, and covariance loss
respectively.

α β γ Accuracy

25 25 1 49.61
1 1 0 47.72
0 25 1 41.72
25 0 1 collapse
1 0 0 collapse

S3.6. Analysis of Loss Components

SeCo has a joint loss of MSE loss, covariance loss, and
variance loss. Here, we remove one loss at a time to analyze
its effectiveness on pretraining. We report top-1 accuracy
on COCO-OCD in Tab. S3. The result demonstrates that
without variance loss, SeCo reached information collapse,
aligning with the trend in VICReg (Bardes et al., 2022).
Without covariance loss, performance drops 2% in accuracy.
Different from the observations made in VICReg (Bardes
et al., 2022), without MSE loss, SeCo manages to achieve
41.72% in accuracy without collapses. One possible
reason is that starting from weights obtained on ImageNet,
the encoder has captured useful visual features. Thus,
adding information regularization during pre-training on
COCO-OCD can avoid collapse even without enforcing
association between contexts and targets.

S3.7. Probing External Memory

In the ablation study, we probe what the external memory
has learned by visualizing the pairwise KL divergence of
attention score over memory slots for object categories in
COCO-VOC. Here, we provide the pseudocode of obtaining
the matrix in Algo. S3.
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